Solar Panel in Rooftop |
The technology that’s surprised almost everyone is conventional crystalline silicon. A few years ago, silicon solar panels cost $4 per watt, and Martin Green, professor at the University of New South Wales and one of the leading silicon solar panel researchers, declared that they’d never go below $1 a watt. “Now it’s down to something like 50 cents of watt, and there’s talk of hitting 36 cents per watt,” he says.
The U.S. Department of Energy has set a goal of reaching less than $1 a watt—not just for the solar panels, but for complete, installed systems—by 2020 (see “Why Solar Installations Cost More in the U.S. than in Germany”). Green thinks the solar industry will hit that target even sooner than that. If so, that would bring the direct cost of solar power to six cents per kilowatt-hour, which is cheaper than the average cost expected for power from new natural gas power plants. (The total cost of solar power, which includes the cost to utilities to compensate for its intermittency, would be higher, though precisely how much higher will depend on how much solar power is on the grid, and other factors.)
Solar Panel |
One of Green’s former students and colleagues, Jianhua Zhao, cofounder of solar panel manufacturer China Sunergy, announced this week that he is building a pilot manufacturing line for a two-sided solar cell that can absorb light from both the front and back. The basic idea, which isn’t new, is that during some parts of the day, sunlight falls on the land between rows of solar panels in a solar power plant. That light reflects onto the back of the panels and could be harvested to increase the power output. This works particularly well when the solar panels are built on sand, which is highly reflective. Where a one-sided solar panel might generate 340 watts, a two-sided one might generate up to 400 watts. He expects the panels to generate 10 to 20 percent more electricity over the course of a year.
Solar Car |
Even longer-term, Green is betting on silicon, aiming to take advantage of the huge reductions in cost already seen with the technology. He hopes to greatly increase the efficiency of silicon solar panels by combining silicon with one or two other semiconductors, each selected to efficiently convert a part of the solar spectrum that silicon doesn’t convert efficiently. Adding one semiconductor could boost efficiencies from the 20 to 25 percent range to around 40 percent. Adding another could make efficiencies as high as 50 percent feasible, which would cut in half the number of solar panels needed for a given installation. The challenge is to produce good connections between these semiconductors, something made challenging by the arrangement of silicon atoms in crystalline silicon.
Source: http://www.technologyreview.com
Your post about solar panel is great and very nice. It is very helpful. Now a days many urban area in many country use this technology and this is great. so i hope your future solar latest technology
ReplyDeleteinstallations continue to grow quickly .